公司产品系列
Product range咨询热线:
13651783167SMC气缸对于接近行程末端时速度较高的气缸,不采取必要措施,活塞就会以很大的力(能量)撞击端盖,引起振动和损坏机件。
为了使活塞在行程末端运动平稳,不产生冲击现象。在气缸两端加设缓冲装置,一般称为缓冲气缸。
SMC气缸其工作原理是:当活塞在压缩空气推动下向右运动时,缸右腔的气体经柱塞孔4及缸盖上的气孔8排出。在活塞运动接近行程末端时,活塞右侧的缓冲柱塞3将柱塞孔4堵死、活塞继续向右运动时,封在气缸右腔内的剩余气体被压缩,缓慢地通过节流阀6及气孔8排出,被压缩的气体所产生的压力能如果与活塞运动所具有的全部能量相平衡,即会取得缓冲效果,使活塞在行程末端运动平稳,不产生冲击。调节节流阀6阀口开度的大小,即可控制排气量的多少,从而决定了被压缩容积(称缓冲室)内压力的大小,以调节缓冲效果。若令活塞反向运动时,从气孔8输入压缩空气,可直接顶开单向阀5,推动活塞向左运动。如节流阀6阀口开度固定,不可调节,即称为不可调缓冲气缸。
日本SMC气缸的工作原理
机床夹具气动系统机床夹具气动系统的原理图,SMC夹紧气缸本气动系统的执行元件为A、B、C三个夹紧气缸,通过这三个夹紧气缸来夹紧或松开工件。这一夹紧装置结构简单,工作效率高,故常用于机械加工自动线和组合机床中。一二位四通脚踏换向阀;2,3,5,6—单向节流阀;4—行程阀(二位三通机动换向阀)7一二位四通气控换向阀;8-二位三通气控换向阀;9,10一气源;A,B,C一夹紧缸机床夹具气动系统工作时的动作循环是工件置位→缸A活塞杆伸出夹紧→SMC工件定位后缸B和缸C的活塞杆伸出→工件侧面被夹紧后加工→缸B和缸C的活塞杆退回→缸A的活塞杆退回→工件松开工作原理是,工件定位后,踩下脚踏换向阀1,脚踏换向阀左位工作,气源9的压缩空气经换向阀1、smc气缸单向节流阀2进入缸A无杆腔,有杆腔内的空气经单向节流阀3和换向阀1排空,缸A活塞杆伸出夹紧工件,工件被夹紧的同时,行程阀4被压下,压缩空气(气源10)经行程阀4左位、节流阀6作用于换向阀8,换向阀8切换为右位,压缩空气(气源9)经换向阀8右位、换向阀7左位进入缸B和缸C的无杆腔,缸B和缸C有杆腔的空气经换向阀7排空,SMC电磁阀缸B和缸C的活塞杆伸出,工件从侧面被夹紧后进行加工,同时缸B和缸C内的压缩空气经单向节流阀5进入换向阀7右侧气室,右侧气室压力逐渐升高,待工件加工完毕时,换向阀7右侧气室的压力升高使换向阀7切换至右位,缸B和缸C有杆腔进压缩空气,无杆腔排气缸B和缸C松开,缸B和缸C*松开后,有杆腔内的压力继续增大,控制气路作用于换向阀1的右侧使换向阀1切换至右位,压缩空气(气源9)经换向阀1右位、单向节流阀3进入缸A的有杆腔,无杆腔经单向节流阀2至换向阀1排空,缸A活塞杆缩回,缸A松开工件,至此完成一个工作循环。换向阀7、8换向的延时时间由其前面的单向节流阀5、6的开度决定,开度越小,延时时间越长,开度越大,延时时间越短。
SMC气缸工作原理一、单作用气缸只有一腔可输入压缩空气,实现一个方向运动。其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。单作用气缸的特点是:1)仅一端进(排)气,结构简单,耗气量小一、单作用气缸只有一腔可输入压缩空气,实现一个方向运动。其活塞杆只能借助外力将其推回;通常借助于弹簧力,膜片张力,重力等。单作用气缸的特点是:1:仅一端进(排)气,结构简单,耗气量小。 2:用弹簧力或膜片力等复位,压缩空气能量的一部分用于克服弹簧力或膜片张力,因而减小了活塞杆的输力。3:缸内安装弹簧、膜片等,一般行程较短;与相同体积的双作用气缸相比,有效行程小一些。4:气缸复位弹簧、膜片的张力均随变形大小变化,因而活塞杆的输出力在行进过程中是变化的。
由于以上特点,单作用活塞气缸多用于短行程。其推力及运动速度均要求不高场合,如气吊、定位和夹紧等装置上。单作用柱塞缸则不然,可用在长行程、高载荷的场合。
二、双作用气缸工作原理图双作用气缸指两腔可以分别输入压缩空气,实现双向运动的气缸。其结构可分为双活塞杆式、单活塞杆式、双活塞式、缓冲式和非缓冲式等。此类气缸使用为广泛。
1)双活塞杆双作用气缸双活塞杆气缸有缸体固定和活塞杆固定两种。
缸体固定时,其所带载荷(如工作台)与气缸两活塞杆连成一体,压缩空气依次进入气缸两腔(一腔进气另一腔排气),活塞杆带动工作台左右运动,工作台运动范围等于其有效行程s的3倍。安装所占空间大,一般用于小型设备上。 活塞杆固定时,为管路连接方便,活塞杆制成空心,缸体与载荷(工作台)连成一体,压缩空气从空心活塞杆的左端或右端进入气缸两腔,使缸体带动工作台向左或向左运动,工作台的运动范围为其有效行程s的2倍。适用于中、大型设备。三、缓冲气缸图缓冲气缸1—活塞杆;
日本SMC气缸的工作原理
扫码关注我们